

Revision History 32K x 8 BIT HIGH SPEED CMOS SRAM

Revision	Details	Date
Rev 1.0	Initial Release	June. 2024

AS7C256C

FEATURES

Fast access time :15nsLow power consumption:

Operating current : 80mA (5V TYP)

40mA (3V TYP)

Standby current: 1mA /0.5mA (5V/3V TYP)

Wide power supply: 2.7V ~ 5.5VAll inputs and outputs TTL compatible

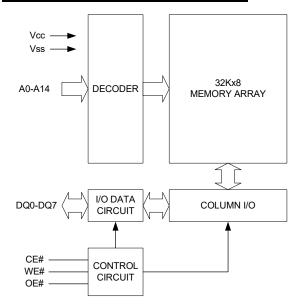
Fully static operationTri-state output

Data retention voltage : 2.0V (MIN.)Package : 28-pin 300 mil Skinny PDIP

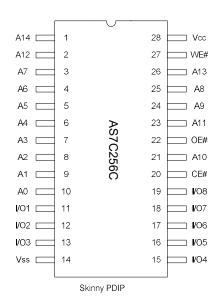
GENERAL DESCRIPTION

The AS7C256C is a 262,144-bit high speed CMOS static random access memory organized as 32,768 words by 8 bits. It is fabricated using very high performance, high reliability CMOS technology. Its standby current is stable within the range of operating temperature.

The AS7C256C is well designed for high speed system application. Easy expansion is provided by using an active LOW Chip Enable(CE#). The active LOW Write Enable(WE#) controls both writing and reading of the memory.


The AS7C256C operates from a single power supply. The range of supply voltage is from 2.7V to 5.5V and all inputs and outputs are fully TTL compatible.

ORDERING INFORMATION


Droduct	Product Operating		Speed	Power Dissipation		
Product	Temperature	Vcc Range	Speed	(I _{SB1} ,TYP.) 5V/3V	(Icc,TYP.) 5V(3V)	
AS7C256C-15PCN	0 ~ 70℃	2.7 ~ 5.5V	15ns	1mA/0.5mA	80mA (40mA)	

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

PIN DESCRIPTION

SYMBOL	DESCRIPTION
A0 - A14	Address Inputs
I/O1 - I/O8	Data Inputs/Outputs
CE#	Chip Enable Input
WE#	Write Enable Input
OE#	Output Enable Input
Vcc	Power Supply
Vss	Ground

ABSOLUTE MAXIMUM RATINGS*

PARAMETER	SYMBOL	RATING	UNIT
Voltage on Vcc relative to Vss	V _{T1}	-0.5 to 6.5	V
Voltage on any other pin relative to V _{SS}	V_{T2}	-0.5 to V _{CC} +0.5	V
Operating Temperature	TA	0 to 70	$^{\circ}$
Storage Temperature	T _{STG}	-65 to 150	°C
Power Dissipation	P _D	1	W
DC Output Current	Іоит	50	mA

^{*}Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to the absolute maximum rating conditions for extended period may affect device reliability.

TRUTH TABLE

MODE	CE#	OE#	WE#	I/O OPERATION	SUPPLY CURRENT
Standby	Н	X	X	High-Z	I _{SB1}
Output Disable	L	Н	Н	High-Z	Icc
Read	L	L	Н	D _{оит}	Icc
Write	L	Х	L	DiN	Icc

Note: H = V_{IH}, L = V_{IL}, X = Don't care.

DC ELECTRICAL CHARACTERISTICSFor Vcc= 2.7V~5.5V

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP. *4	MAX.*5	UNIT
Supply Voltage	Vcc		2.7	5.0	5.5	V
Input High Voltage	V _{IH} *1		2.4	-	Vcc+0.5	V
Input Low Voltage	V _{IL} *2		- 0.5	-	0.8	V
Input Leakage Current	ILI	$V_{CC} \ge V_{IN} \ge V_{SS}$	- 1	-	1	μA
Output Leakage Current	ILO	V _{CC} ≧ V _{OUT} ≧ V _{SS} , Output Disabled	- 1	-	1	μA
Output High Voltage	Vон	$I_{OH} = -4mA$	2.4	-	-	V
Output Low Voltage	Vol	$I_{OL} = 8mA$	-	-	0.4	V
Average Operating Power supply Current	Icc	Cycle time = MIN. CE# = V _{IL} , I _{I/O} = 0mA Others at V _{IL} or V _{IH}	-	80	140	mA
Standby Power Supply Current	Is _B 1	CE# \geq Vcc - 0.2V, Others at 0.2V or Vcc-0.2V	-	1	5	mA

For Vcc= 2.7~3.6V

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP. *4	MAX.*5	UNIT
Supply Voltage	Vcc		2.7	3.3	3.6	V
Input High Voltage	V _{IH} *1		2.0	-	Vcc+0.5	V
Input Low Voltage	V _{IL} *2		- 0.5	-	0.6	V
Input Leakage Current	ILI	$V_{CC} \ge V_{IN} \ge V_{SS}$	- 1	-	1	μA
Output Leakage Current	ILO	$V_{CC} \ge V_{OUT} \ge V_{SS},$ Output Disabled	- 1	-	1	μA
Output High Voltage	Vон	$I_{OH} = -4mA$	2.4	-	-	V
Output Low Voltage	Vol	$I_{OL} = 8mA$	-	-	0.4	V
Average Operating Power supply Current	Icc	Cycle time = MIN. CE# = V _{IL} , I _{I/O} = 0mA Others at V _{IL} or V _{IH}	-	40	50	mA
Standby Power Supply Current	1004	CE# \geq V _{CC} - 0.2V, Others at 0.2V or V _{CC} -0.2V	-	0.5	3	mA

- Notes: 1. VIH(max) = VCC + 3.0V for pulse width less than 10ns.
 - 2. VIL(min) = VSS 3.0V for pulse width less than 10ns.
 - 3. Over/Undershoot specifications are characterized, not 100% tested.
 - 4. Typical values are included for reference only and are not guaranteed or tested.
 - Typical valued are measured at VCC = VCC(TYP.) and TA = 25° C
 - 5. Max. Values are guaranteed by Product Characterization, not guaranteed or tested

CAPACITANCE $(T_A = 25^{\circ}C, f = 1.0 \text{MHz})$

PARAMETER	SYMBOL	MIN.	MAX.	UNIT
Input Capacitance	Cin	-	6	pF
Input/Output Capacitance	CI/O	-	8	pF

Note: These parameters are guaranteed by device characterization, but not production tested.

AC TEST CONDITIONS

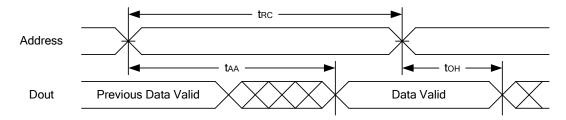
Input Pulse Levels	0.2V to V _{CC} - 0.2V
Input Rise and Fall Times	3ns
Input and Output Timing Reference Levels	1.5V
Output Load	$C_L = 30pF + 1TTL$, $I_{OH}/I_{OL} = -4mA/8mA$

AC ELECTRICAL CHARACTERISTICS

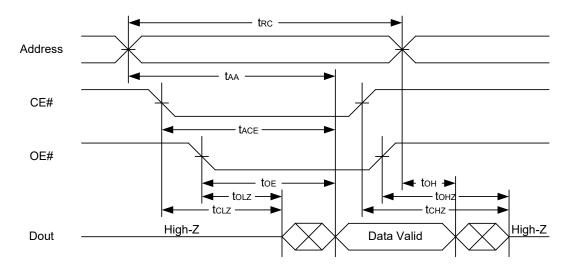
(1) READ CYCLE

PARAMETER	SYM.	AS7C256	C-15PCN	UNIT
PARAMETER	STIVI.	MIN.	MAX.	
Read Cycle Time	trc	15	-	ns
Address Access Time	t AA	-	15	ns
Chip Enable Access Time	t _{ACE}	-	15	ns
Output Enable Access Time	toe	-	7	ns
Chip Enable to Output in Low-Z	t _{CLZ} *	4	-	ns
Output Enable to Output in Low-Z	tolz*	0	-	ns
Chip Disable to Output in High-Z	t _{CHZ} *	-	7	ns
Output Disable to Output in High-Z	t _{OHZ} *	-	7	ns
Output Hold from Address Change	tон	3	-	ns

(2) WRITE CYCLE


PARAMETER	SYM.	AS7C256	UNIT	
PARAMETER	STIVI.	MIN.	MAX.	
Write Cycle Time	twc	15	-	ns
Address Valid to End of Write	t _{AW}	12	-	ns
Chip Enable to End of Write	tcw	12	-	ns
Address Set-up Time	t as	0	-	ns
Write Pulse Width	twp	10	-	ns
Write Recovery Time	twR	0	-	ns
Data to Write Time Overlap	t _{DW}	8	-	ns
Data Hold from End of Write Time	t₀н	0	-	ns
Output Active from End of Write	tow*	4	-	ns
Write to Output in High-Z	tw _{HZ} *	-	8	ns

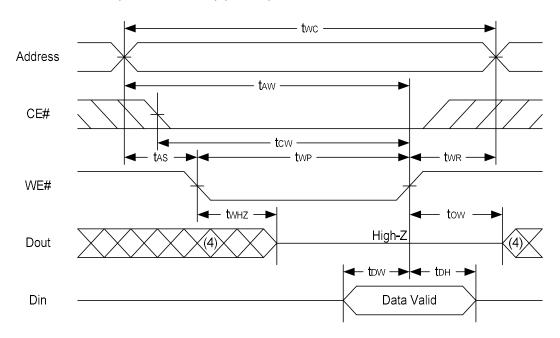
^{*}These parameters are guaranteed by device characterization, but not production tested.



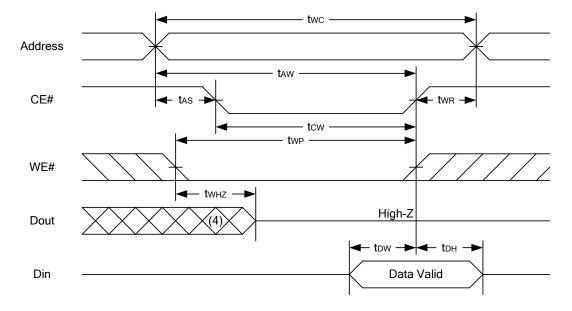
TIMING WAVEFORMS

READ CYCLE 1 (Address Controlled) (1,2)

READ CYCLE 2 (CE# and OE# Controlled) (1,3,4,5)



Notes:


- 1.WE# is high for read cycle.
- 2.Device is continuously selected OE# = low, CE# = low.
- 3.Address must be valid prior to or coincident with CE# = low,; otherwise t_{AA} is the limiting parameter. 4.tclz, t_{CLZ} , t_{CLZ} , t_{CLZ} and t_{CHZ} are specified with C_L = 5pF. Transition is measured ±500mV from steady state.
- 5.At any given temperature and voltage condition, t_{CHZ} is less than t_{CLZ} , t_{OHZ} is less than t_{OLZ}

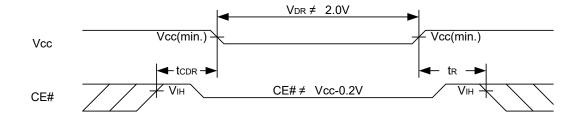
WRITE CYCLE 1 (WE# Controlled) (1,2,4,5)

WRITE CYCLE 2 (CE# Controlled) (1,4,5)

- 1.A write occurs during the overlap of a low CE#, low WE#.

 2.During a WE# controlled write cycle with OE# low, twp must be greater than twhz + tow to allow the drivers to turn off and data to be placed
- 3. During this period, I/O pins are in the output state, and input signals must not be applied.
- 4.If the CE# low transition occurs simultaneously with or after WE# low transition, the outputs remain in a high impedance state.
- $5.t_{OW}$ and t_{WHZ} are specified with C_L = 5pF. Transition is measured ± 500 mV from steady state.

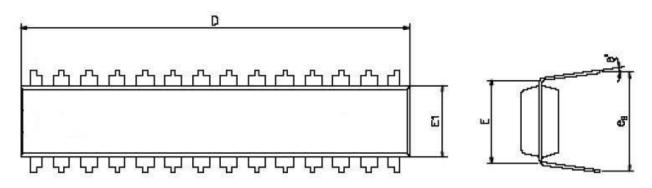
-8 / 11-June. 2024 Confidential

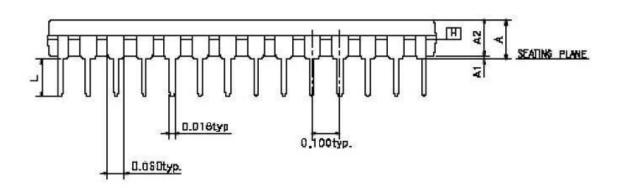


DATA RETENTION CHARACTERISTICS

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
V _{CC} for Data Retention	V _{DR}	$CE\# \ge V_{CC} - 0.2V$	2.0	-	5.5	V
Data Retention Current	I _{DR}	V_{CC} = 2.0V, CE# $\geq V_{CC}$ - 0.2V	-	0.3	2	mA
Chip Disable to Data Retention Time	tcdr	See Data Retention Waveforms (below)	0	-	-	ns
Recovery Time	t _R		t _{RC*}	-	-	ns

 t_{RC^*} = Read Cycle Time


DATA RETENTION WAVEFORM



PACKAGE OUTLINE DIMENSION

28-pin 300mil PDIP Package Outline Dimension

SYMBOLS	MIN.	NOR.	MAX.			
Α	_	- 3	0.210			
A1	0.015					
A2	0.125	0.130	0.135			
D	1.385	1.390	1.400			
E	0.310 BSC					
E1	E1 0.283		0.293			
Ľ	L 0.115		0.150			
€R	e _B 0.330		0.370			
а	0	7	15			

UNIT: INCH

NOTE:

1.JEDEC OUTLINE : MS-D15 AH

AS7C256C

Part numbering system

AS7C	256C	–XX	X	X	X	XX
SRAM prefix	Device number 256: 256k (x8) C: revision C	Access time -15 = 15ns	Package: P=DIP 300 mil	Temperature range: C = Commercial 0 ~ 70°C	N=Lead Free and Halogen Free Part	Packing Type None: Tray TR: Reel

Alliance Memory, Inc. 12815 NE 124th Street Suite D Kirkland, WA 98034

Tel: 425-898-4456
Fax: 425-896-8628
www.alliancememory.com
Copyright © Alliance Memory
All Rights Reserved

© Copyright 2007 Alliance Memory, Inc. All rights reserved. Our three-point logo, our name and Intelliwatt are trademarks or registered trademarks of Alliance. All other brand and product names may be the trademarks of their respective companies. Alliance reserves the right to make changes to this document and its products at any time without notice. Alliance assumes no responsibility for any errors that may appear in this document. The data contained herein represents Alliance's best data and/or estimates at the time of issuance. Alliance reserves the right to change or correct this data at any time, without notice. If the product described herein is under development, significant changes to these specifications are possible. The information in this product data sheet is intended to be general descriptive information for potential customers and users, and is not intended to operate as, or provide, any quarantee or warrantee to any user or customer. Alliance does not assume any responsibility or liability arising out of the application or use of any product described herein, and disclaims any express or implied warranties related to the sale and/or use of Alliance products including liability or warranties related to fitness for a particular purpose, merchantability, or infringement of any intellectual property rights, except as express agreed to in Alliance's Terms and Conditions of Sale (which are available from Alliance). All sales of Alliance products are made exclusively according to Alliance's Terms and Conditions of Sale. The purchase of products from Alliance does not convey a license under any patent rights, copyrights; mask works rights, trademarks, or any other intellectual property rights of Alliance or third parties. Alliance does not authorize its products for use as critical components in life-supporting systems where a malfunction or failure may reasonably be expected to result in significant injury to the user, and the inclusion of Alliance products in such life-supporting systems implies that the manufacturer assumes all risk of such use and agrees to indemnify Alliance against all claims arising from such use.