

1M SRAM 44L TSOP II (400mil) Reliability Test Report

Device No.: AS6CE1016A-45ZIN

Description: 1M (64KX16) Bits Low Power SRAM With

Error-Correcting Code (ECC)

Prepared by: QA

Approved Date: 2022.06.07

Document No: 310-9N8-AI1 Rev: A

(1.) Introduction

This report provides an overview of the reliability test conditions and results of low power 64Kx16 CMOS SRAM with ECC. In ALLIANCE, the basic policy is to maintain electrical characteristics within the limits established in the specifications of each device.

(2.) Product information

The AS6CE1016A is a 64Kx16 bits low power CMOS static random access memory with ECC, and operates from a single 2.7~3.6V power supply and all inputs and outputs are fully TTL compatible.

The following is the basic process and package information of this device.

Package Type	44L TSOPII (400mil)		
L/F material	A42 / C7025 / EFECT64T		
Wire Bond material	Au φ23um		
Package material	Lead Free (Green)		
Lead Finish	Pure Sn (100% Matte Tin)		
Die attach adhesive	Hitachi EN-4900/ Sumitomo CRM-1076		
Molding compound	Hitachi CEL-9200HF Sumitomo MEM-G63		

(3.) Reliability Test Result

(3.1) Life Tests

*HTOL

HTOL is a "high temperature operating life" test. All memory cells were written with march pattern at Vcc_max=4.8V and ambient temperature = 125°C during HTOL test.

The data for this test is presented in the following table:

Test Method			Result	
Reference Standard	Test Condition	LTPD %	Samples	Fails
	\/aa may=4.0\/	5	77 (I665714A0552O)	0
JEDEC-STD-22-A108	5	80 (I895534B0231O)	0	
	5	80 (I666429C1131O)	0	

FAILURE RATE CALCULATION

Accelerated test would expose any possible design and process flaws, it is also used to predict failure rates through the Arrhenius Equation under normal operation.

Acceleration factor(AF)

AF(Temperature) = exp[(Ea/K)(1/T1 - 1/T2)]

Ea: activation energy

K: Boltzman constant(8.62*E-5 eV/K)

T1 : max. operating temperature(absolute temperature K)

T2: stress temperature(absolute temperature K)

AF(voltage) = $\exp(\beta \Delta V)$

β: constant that is function of dielectric type and thickness

ΔV: stress voltage - max. operating voltage

So; the acceleration factor (AF)=AF(temperature)*AF(voltage)

Sample calculation with Ea=0.69 eV

AFT(125° C, 70° C)=25.15 AFV(4.8V,3.6V)=37.94

AF(total)=AF(temperature)*AF(voltage)=954.30

Failure Rate(F.R.) = $[X^2(1-CL,2N+2)]/2EDH$ (FIT)]

X : CHI SQUARE Function

CL: Confidence Level

N: No of Failure

EDH: Equivalent Device Hour

		At Temp.=70 °C	-	Failure rate at 70 °C
	VCC -4.0 V	Vcc =3.6 V		
HTOL	237000	2.26+08	0/237	4.05 FIT

Based on CL=60%

(3.2) Environmental Tests

The purpose of environmental test is to measure the device that resist to exposure at high and low temperature, and high humidity conditions.

a) Temperature Cycling Test (TCT)

The purpose of temperature cycle testing is to study the effect of thermal expansion mismatch among the different component with in a specific die and package system. Such as wire bond, die bond and package irregularities, die crack ...etc. The data for this test is presented in the following table:

Tes	Test Method			
Reference Standard	Test Condition	LTPD %	Samples	Fails
			77 (C152067J0231S)	0
	65°C to 150°C		77 (IL01006A0430S)	0
JEDEC-STD-22-A104	-65°C to 150°C 24 min/cycle 500 cycle	5	77 (I188580L0631S)	0
			77 (IL23059F0330S)	0
			77 (I213589O05W4S)	0

b) Thermal Shock Test (TST)

Thermal shock testing is similar to TCT (temperature cycling test), except that in thermal shock tests an additional stress is provided: a sudden change in temperature due to a rapid transfer time. Thus this test can detect failure mechanisms caused by temperature transient and temperature gradient. The data for this test is presented in the following table:

Test Method			Result	
Reference Standard	Test Condition	LTPD %	Samples	Fails
			45 (IA684555D6F4C)	0
JEDEC-STD-22-A106	-65°C to 150°C 11 min/cycle	5	45 (CYC18370A430C)	0
JEDEC-31D-22-A100	500 cycle		77 (IA899370BX30C)	0
	·		45 (IA899391A23PH)	0

c) Pressure Cooker Test (PCT)

PCT test is performed to evaluate the moisture resistance of non-hermetic packaged units. Devices are subject to pressure, humidity, and elevated temperature to accelerate the penetration of moisture through the molding compound or along the interface of the device pins and molding compound.

The data for this test is presented in the following table:

Test Method			Result	
Reference Standard	Test Condition	LTPD %	Samples	Fails
			77 (C152067J0231S)	0
JEDEC-STD-22-A102	2 atms 121°ℂ/100%RH	5	77 (IL01006A0430S)	0
JEDEC-31D-22-A102	168 hrs	3	77 (I188580L0631S)	0
			77 (IL23059F0330S)	0

d) Highly Accelerated Stress Test (HAST)

HAST is performed to evaluate the non-hermetic packaging of solid state equipment in humid environments. HAST accelerates the penetration of moisture through the external protective material or at the seals around the chip leads.

The data for this test is presented in the following table:

Tes	Test Method			
Reference Standard	Test Condition	LTPD %	Samples	Fails
			77 (C152067J0231S)	0
	2 atms		77 (IL01006A0430S)	0
JEDEC-STD-22-A110	130℃/85%RH no bias	5	77 (I188580L0631S)	0
	168 hrs		77 (IL23059F0330S)	0
			77 (I213589O05W4S)	0

e) High Temperature Storage Test (HTST)

HTSL is typically used to determine the effect of time and temperature, under storage conditions, for thermally activated failure mechanisms of solid state electronic devices, including nonvolatile memory devices (data retention failure mechanisms). During the test elevated temperatures (accelerated test conditions) are used without electrical stress applied.

The data for this test is presented in the following table:

Test Method			Result	
Reference Standard	Test Condition	LTPD %	Samples	Fails
		5	77 (IK47048C0230S)	0
JEDEC-STD-22-A103	Temperature: 150°ℂ	5	77 (IM35321D023AS)	0
JEDEC-31D-22-A103	Read out: 1000 hrs	5	77 (IM11517D0330S)	0
		5	77 (I213589O05W4S)	0

3.3) ESD Test

Test Item	Test Method				Result
rest item	Reference Standard	Test Condition	Class	Sample	Result
H.B.M.	JEDEC-STD-22-A114	R=1.5 Kohm C=100 pF	3A	18	0/18 >±4.0KV
M.M.	JEDEC-STD-22-A115	R=0 ohm C=200 pF	В	18	0/18 >±400V
C.D.M	JESD22-C101	Without socket	IV	12	0/12 >±1200V

(3.4) Latch-up Test

Test Item	Test Method				Result
rest item	Reference Standard	Test Condition	Class	Sample	Nesuit
Latab Un	JEDEC-STD-78	Current trigger	ı	11	0/11 >±400mA
Latch-Up	(With socket)	Voltage trigger	l	3	0/3 >5.55V

(3.5) Solderability Test

Solderability test is to evaluate device package be joined to another surface using solder.

The data for this test is presented in the following table:

Test N	Method	Result	
Reference Standard	Test Condition	Samples	Fails
		5 (I151712E0354S)	0
	1. Sn / 3.0Ag / 0.5Cu	5 (I153539M0264O)	0
JEDEC STD-22-B102 JEDEC STD-002	2. Steam aging: 8hrs (93°C/100% R.H./1atm)	5 (I153623M0264O)	0
MIL-STD-883E-2003	3. 245±5°C, 5 sec. >95% solder covering	5 (IA661383C664C)	0
	g .	5 (I213589O05W4S)	0
		5 (I151712E0354S)	0

Appendix

Reversion History

Rev.	Effective Date	Init.	Description of Changing
Α	Jun.07.2022	QA	Initial Issue.